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Abstract. In previous papers (Refs. 1 and 2), an iterative procedure was developed 

in order to restore the differential constraints describing a system. The procedure 

involves quasilinearization with a n  added optimality condition, namely, the require- 

ment of least-square change of the control and the state. In this paper, several 

numerical examples are supplied. They illustrate the rapidly converging characteristics 

of the algorithm described in Refs. 1 and 2. 
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1. Introduction 

In previous papers (Refs. 1-2), a system described by n differential equations 

of the first order involving n state variables and m control variables was considered. 

It was assumed that a nominal state x(t) and a nominal control u(t), not satisfying all 

the equations, but consistent with the boundary conditions, are given. An iterative 

procedure was developed leading to a varied state 2(t) and a varied control G(t) 

consistent with all the equations and the boundary conditions. In this paper, the 

procedure developed in Refs. 1 and 2 is applied to solve several restoration problems. 

The restoration is performed by minimizing the integral 

J =L ?(6u T 6u+K6x T 6x)dt 

Jo 

where 6u(t) is the control change, 6x(t) the state change, and K a weighting coefficient. 

Numerical examples a r e  developed for three values of the weighting coefficient, namely, 

K = 0, K = 0.5, and K = 1; it is shown that the procedure of Refs. 1 and 2 restores the 

constraints to the same degree of accuracy in the same number of i terat i~ns~regardless  

of the value of K in the range 0 K 4 1. 
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2. Theory 

3 
Consider a system described by the nonholonomic equation 

where x (state variable) denotes an n-vector, u (control variable) denotes an m-vector, 

and cp denotes an n-vector . 
dot denotes the derivative with respect to t . Assume that the state variable is subject 

to the end conditions 

The independent variable is the time t and the 

where T is prescribed and a and 8 denote prescribed n-vectors . 
Next, suppose that nominal functions x(t), u(t) satisfying the boundary conditions 

(3), but not consistent with the differential constraint (2) are available. Let %t), G(t) 

denote varied functions satisfying the boundary conditions (3) and related to the nominal 

functions as follows: 

2(t) = x(t) + 6x(t) , E(t) = u(t) + 6u(t) (4) 

where 6x(t) and 6u(t) denote the perturbations of x and u about the nominal values. If 

quasilinearization is employed, Eq. (2) is approximated by 

In Eq. (S ) ,  A denotes the n x n matrix whose jth - column is the gradient of the function 

cd with respect to the vector x; analogously, 8 denotes the m x n matrix whose jth - 
3 1 2  n The vector x has scalar components x ,x , . . .,x . The vector u has scalar components 

u , u , . . . , u  1 2  m 1 2  n . The vector cp has scalar components cp , t~ , . . . ,rg . 
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column is the gradient of the function m’ with respect to the vector u. The superscript 

T denotes the transpose of a matrix. In order to prevent the perturbations 6x and 6u 

from becoming too large, it is convenient to imbed Eq. (5) into the one-parameter 

family of equations 

T T 6k = A  6~ + B  ~ u - I J . ( ~  - ~ p )  

where is a prescribed scaling factor in the range 

0 5 I J . S l  (7) 

The boundary conditions (3) become 

(8 ) 6X(O) = 0 , 6X(T) = 0 

2.1. Minimal Problem. I€ the functions x(t), u(t) are an approximation to an 

interesting solution, one may wish to restore the constraint (2) while causing the 

least-square change of the control and the state. Therefore, we minimize the functional 

(l), where K is a weighting coefficient, subject to the linearized constraint (6) and the 

boundary conditions (8). Standard methods of the calculus of variations (Refs. 1-2) 

show that the Euler equations of this problem are given by 4 

where X(t), an n-vector, denotes an undetermined, variable Lagrange multiplier. 

Equations (9) are to  be solved in combination with Eq. (6) and the boundary conditions 

(8). Upon eliminating 6u from (6) and (9-2), we obtain the differential system 

n 
The vector X has scalar components X1, X2, . . , , X . 4 
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which, for a given value of 11, must be integrated subject to the boundary conditions (8). 

Once the functions 6x(t) and X(t) are known, the function 6u(t) can be computed from 

(9-2). 

Since Eqs. (10) are linear in 6x and A,  any of the methods for solving linear 

equations with variable coefficients can be employed. For example, let the method of 

particular solutions be used (Ref. 3). To this effect, we integrate Eqs . (10) forward 

n + 1 times from t = 0 to t = T using n + 1 different sets of initial conditions and the 

stopping condition t = T . From these integrations , we obtain the pairs of functions 

6x. = 6xi(t) , Xi = Xi(t) , i = 1,2, . . ., n+l 
1 

each of which is a particular solution of (10). 

condition (8-1) is employed, that is, 6x.(O) is 
1 

6Xi(0) = 0 7 

In each integration, the prescribed initial 

such that 

i=l, 2, . . . , n+l (12) 

W e  note that, for each i, Eq. (12) is equivalent to n scalar conditions. Since 2n initial 

conditions are needed for each integration of the system (lo), Eq. (12) must be 

completed by the relation 

y o )  = i=1,2, . . .,n+l 
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where the Kronecker deltas are such that 

6 . . = 0  , i # j  
9 

Next, we introduce the n 3.1 undetermined, scalar constants k. and form the 
1 

linear combinations 

n+l n+l 

1=1 1=1 
6x(t) =I k.6x.(t) , h(t) =I kiXi(t) 1 1  

Then, we inquire whether, by an appropriate choice of the constants, these linear 

combinations can satisfy the differential equations (10) and the end conditions (8). As 

shown in Ref. 3, this is precisely the case if the constants k. are determined as follows: 
1 

n+l 

1=1 
z k . = 1  1 , (16) 

W e  note that (16- 1) is a scalar equation, while (16-2) is a vector equation, equivalent to  

n scalar equations. Therefore, the system (16) is equivalent to n + 1 scalar equations 

which are linear and supply the constants ki. 

2 .2 .  Performance Index: Descent Property. Here, we define the scalar 

performance index 

I- 

P = f (2 - 
0 

- cp)dt 

Clearly, P = 0 if x(t) and u(t) satisfy Eq. (2), and P > 0 otherwise. The first variation 

of the performance index is given by (Ref. 2) 
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Since P > 0, Eq. (18) shows that the first variation of the performance index is negative 

for u > 0. Therefore, if p is sufficiently small, the decrease of the performance index 

is guaranteed. 

2.3. Summary of the Algorithm. In the light of the previous discussion, we 

summarize the algorithm as follows: 

(a) Assume nominal functions x(t), u(t). 

(b) For the nominal functions, compute the vector 2 - rp, the matrices A and 

B, and the performance index P with Eq. (17). 

(c) Assuming IJ- = 1, determine the n + 1 particular solutions 6x.(t) , h$t) by 
1 

forward integratinn of Eqs. (10) subject t o  the initial conditions (12)-(13). 

(d) Compute the n + 1 constants k. from Eqs. (16). 

(e) Determine the correction 6x(t) with Eq. (15-1), the function x(t) with 

1 

Eq. (15-2), and the correction 6u(t) with Eq. (9-2). 

(f) Compute the varied functions Z(t) and G(t) with Eqs. (4). 

(g) For the varied functions S(t) and G(t), compute the performance index ?. If 

P < P, the scaling factor u = 1 is acceptable. If P > P, the previous value of umust be 

replaced by some smaller value in the range (7) until the condition ? < P is met. This 

N 

can be achieved through successive bisections of p (see Ref. 2). 

(h) After a value of p in the range (7) has been found such that P < P, the first 

iteration is completed. Next, the function Z(t), G(t) given by Eqs . (4) are employed 
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as the nominal functions x(t), u(t) for the second iteration, and the procedure is repeated 

until a desired degree of accuracy is obtained, that is, until the performance index (17) 

satisfies the inequality 

where is a small number. 
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3 .  Examples Involving One Differential Constraint 

For simplicity, all the symbols employed in this section denote scalar quantities. 

Consider the scalar differential constraint 

2 = cp(x, u,t) 

subject to the boundary conditions 

x(0) = a y x(7) = p (21) 

Assume nominal functions x(t), u(t) consistent with the boundary conditions (21) but not 

consistent with the differential constraint (20). To restore the constraint, the iterative 

algorithm is represented by 

Z(t) = x(t) + 6x(t) , ti@) =u(t) + 6u(t) (22) 

zf X(t) denotes a variable Lagrange multiplier, the functions 6x(t) and X(t) are obtained 

by solving the differential system 

subject to the boundary conditions 

6x(O) = 0 y 6X(T) = o  

For a given u, the solution of (23) is represented by 
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The subscripts 1 and 2 denote the particular solutions obtained by forward integration 

of (23) subject to the initial conditions 

First integration: 6X1(O) = o  , y o )  = 1 

Second integration: 6X2(O) = o  7 X2(0) = o  

The constants kl and k are obtained by solving the linear system 2 

k +k = 1 k16x1(T) +k26x2(7) = O  1 2  

After the functions 6x(t) and X(t) are known, the control change is computed from 

Example 3 . 1 .  Consider the differential constraint 

2 i = x  + u  

subject to the boundary conditions 

x(0) = 1 7 x(1) = 1 

Assume the nominal functions 

(31) x(t) = 1 7 u(t) = 0 

which satisfy the boundary conditions (30) but not the differential constraint (29). To 

restore the constraint, the algorithm of Section 2 is employed and is repeated until 
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Ineq. (19) is satisfied for e = 10-l'. Computations performed with a Burroughs B-5500 

computer in double-precision arithmetic are summarized in  Tables 1-6, where K denotes 

the weighting coefficient and N denotes the iteration number. 

Example 3 .2 .  Consider the differential constraint 

4 i = x  + u  

subject to the boundary conditions 

x(0) = o  , x(1) = 1 (33) 

Assume the nominal functions 

(34) x(t) = t  , u(t) =0.5 

which satisfy the boundary conditions (33) but not the differential constraint (32). To 

restore the constraint, the algorithm of Section 2 is employed and is repeated until 

Ineq. (19) is satisfied for E = 10-l'. Computations performed with a Burroughs B-5500 

computer in double-precision arithmetic are summarized in  Tables 7- 12, where K 

denotes the weighting coefficient and N denotes the iteration number. 

Example 3.3 .  Consider the differential constraint 

2 i = x + exp(u) (35) 

subject to the boundary conditions 

x(0) = o  , x(1) = 3  
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Assume the nominal functions 

(37) x(t) = 3t , u(t) = 0 

which satisfy the boundary conditions (36) but not the differential constraint (35). To 

restore the constraint, the algorithm of Section 2 is employed and is repeated until 

Ineq. (19) is satisfied for 8 = 10-l'. Computations performed with a Burroughs B-5500 

computer in double-precision arithmetic are summarized in Tables 13- 18, where K 

denotes the weighting coefficient and N denotes the iteration number. 
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4. Examples Involving Two Differential Constraints 

For simplicity, all the symbols employed in this section denote scalar quantities. 

Consider the scalar differential constraints 

subject to the boundary conditions 

x(0) = a  y y(0) = 8 , x(7)  = y  y y(7) = 6 (39) 

Assume nominal functions x(t), y(t), u(t) consistent- with the boundary conditions (39) but 

not consistent with the differential constraints (38). To restore the constraints, zhe 

iterative algorithm is represented by 

?(t) = x(t) + 6x(t) y = y(t) + 6y(t) , G(t) = u(t) + 6u(t) (40) 

If x(t) and p(t) denote variable Lagrange multipliers, the functions 6x(t), 6y(t), X(t), 

p(t) are obtained by solving the differential system 

2 6rz:=cp 6x+cp 6y+cp X + c p  4 p - v ( % - c p )  
X Y U u u  

X = - cp X - $ p + K ~ x  
X X 
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6X(O) = o  y Sy(0) = 0 , 6x(T) = o  , 6y($ = o  

For a given u, the solution of (41) is represented by 

The subscripts 1 ,2 ,3  denote the particular solutions obtained by forward integration 

of (41) subject to the initial conditions 

First integration: 6x1(0) = 0 6y1(0) = 0 hl(0) = 1 pl(0) = 0 

Second integration: 6x 2 (0) = 0 6y2(0) = 0 , h2(0) = 0 , p2(0) = 1 (44) 

Third integration: 6x3(0) = 0 6y3(0) = 0 , h3(0) = 0 , p3(0) = 0 

After the functions 6x(t), 6y(t), Wt), p(t) are known, the control change is computed from 

Example 4.1. Consider the differential constraints 
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x(0) = 0 , y(0) = O  , x(1) - 0 . 3  , y(1) = 0 (47) 

Assume the nominal functions 

x(t) = 0.3t , y(t) = 0 9 u(t) = 0 (48 ) 

which satisfy the boundary conditions (47) but not the differential constraints (46). To 

restore the *constraints, the algorithm of Section 2 is employed and is repeated until 

Ineq. (19) is satisfied for E = 10-l'. Computations performed with a Burroughs B-5500 

computer in double-precision arithmetic are summarized in Tables 19-24, where 

K denotes the weighting coefficient and N denotes the iteration number. 

Example 4.2. Consider the differential constraints 

2 ? = y + u  , q = x  -t-exp(y) 

subject to  the boundary conditions 

x(O)=O , y(O)=O , x(0.5)  = 1  , y(0.5) = 3  

(49) 

Assume the nominal functions 

which satisfy the boundary conditions (50) but not the differential constraints (49). To 

restore the constraints, the algorithm of Section 2 is employed and is repeated until 
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Ineq. (19) is satisfied for 

computer in double-precision arithmetic are  summarized in Tables 25-30 where K 

denotes the weighting coefficient and N the iteration number. 

= 10-l'. Computations performed with a Burroughs B-5500 
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Table 1 Converged values of the functions x(t), u(t) for K = 0 

(Example 3.1) 

0 .o 1.0000 -3.5233 

0.1 

0.2 

0.3 

0.4 

0.5 

0.7774 -2.5263 

0.6147 - 1.7152 

0.5085 - 1.0536 

0.4539 -0.5128 

0.4454 -0.0698 

0.6 0 4782 0.2939 

0.7 0.5492 0.5937 

0.8 

0.9 

1 .o 

0.6574 0.8415 

0.8054 1.0472 

1.0000 1.2185 

Table 2. The functions P(N), J(N) for K = 0 

(Example 3.1) 

N P !J J 

1 
0 0.90 x 10 

1 0.32 x 10-1 1 .o 0 . 3 4 ~  10 

2 0.79 x lo-' 1 .o 0.97 x 

3 0.98 x 1.0 0.21 x 

1 
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Table 3. Converged values of the functions x(t), u(t) for K = 0.5 

(Example 3.1) 

t 

0 .o 1 .oooo -3.4413 

0.1 0.7857 -2.4639 

0.2 0.6297 - 1.6766 

0.3 0.5281 -1.0401 

0.4 0.4756 -0.5233 

0.5 0.4669 -0.1014 

0.6 0.4977 0.2455 

0.7 0.5650 0.5335 

0.8 0.6686 0.7754 

0.9 0.8111 0.98 17 

1 .o 1 .oooo 1.1607 

Table 4. The functions P(N), J(N) for K = 0.5 
(Example 3.1) 

N P u J 

0 0.90 x 10 

1 0.28 x 10-1 1 .o 0.34 x 10 

2 0.53 x 1 .o 0.85 x 

3 0.39 x 10 -16 1.0 0.15 x 

1 

1 
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Table 5. Converged values of the functions x(t), u(t) for K = 1 
(Example 3.1) 

0 .o 1 .oooo -3.3649 

0.1 0.7931 -2.4058 

0.2 

0.3 

0.4 

0.5 

0.6 

0.6433 - 1.6407 

0.5460 - 1.0275 

0.4956 -0.5330 

0.4869 -0.1306 

0.5157 0.2006 

0.7 0.5798 0.4777 

0.8 

0.9 

1 .o 

0.6790 0.7139 

0.8165 0.9205 

1 .oooo 1.1066 

Table 6. The functions P(N), J(N) for K = 1 
(Example 3.1) 

N P w J 

1 
0 0.90 x 10 

1 0.24 x 10-1 1 .o 0.34 x 10 

2 0.37 x 1 .o 0 . 7 4 ~  

1 

3 0.16 x 10 -16 1.0 0.lOx 
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Table 7. Converged values of the functions x(t), u(t) for K = 0 
(Example 3.2) 

t 

0 .o 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 .o 

0 .oooo 

0.0900 

0.1801 

0.2703 

0.3608 

0.4520 

0.5448 

0.6408 

0.7430 

0.8579 

1 .oooo 

0.9008 

0.9007 

0.9001 

0.8975 

0.8906 

0.8764 

0.8519 

0.8150 

0.7658 

0.7076 

0.6472 

Table 8. The functions P(N), J(N) for K = 0 
(Example 3.2) 

N P V. J 

0 0 0.16 x 10 

1 0.32 1 .o 0.61 x 10-1 

2 0.79 x 1 .o 0.61 
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Table 9. Converged values of the functions x(t), u(t) for K = 0.5 
(Example 3 -2) 

t x(t) u(t) 

0 .o 0 .oooo 0.9064 

0.1 0.0906 0.9061 

0.2 0.1812 0.9048 

0.3 0.2718 0.9010 

0.4 0.3626 0.8924 

0.5 0.4539 0.8761 

0.6 0.5467 0.8492 

0.7 0.6424 0.8100 

0.8 0.7442 0.7589 

0.9 0.8585 0.7001 

1 .o 1 .oooo 0.6408 

Table 10. The functions P(N), J(N) for K = 0.5 
(Example 3.2) 

N P 3 J 

0 0 0.16 x 10 

1 0.30 loe4 1 .o 0.61 x 10-1 

2 0.60 x 1.0 0.57 x 
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Table 11. Converged values of the functions x(t), u(t) for K = 1 
(Example 3.2) 

0 .o 0.0000 0.9116 

0.1 0.0911 0.9111 

0.2 0.1822 0.9091 

0.3 0.2732 0.9042 

0.4 0.3642 0.8941 

0.5 0.4557 0 A759 

0.6 0.5484 0.8468 

0.7 0.6439 0.8053 

0.8 0.7453 0.7525 

0.9 0.8591 0.6929 

1 .o 1 .oooo 0.6348 

Table 12. The functions P(N), J(N) for K = 1 
(Example 3.2) 

N P IJ- J 

0 0 0.16 x 10 

1 0.27 lom4 1 .o 0.62 x 10-1 

2 0.46 x 10 -11 1.0 0.54 x 
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Table 13. Converged values of the functions x(t), u(t) for K = 0 
(Example 3.3) 

0 .o 0.0000 0.5010 

0.1 0.1654 0.4913 

0.2 

0 -3 

0.4 

0.3331 0.4613 

0.5058 0.4104 

0.6875 0.3421 

0.5 0.8849 0.2650 

0.6 

0.7 

0.8 

0.9 

1.1097 0.1899 

1.3812 0.1255 

1.7324 0.0766 

2.2260 0.0437 

1 .o 3 .oooo 0.0243 

Table 14. The functions P(N), J(N) for K = 0 
(Example 3.3) 

N P U J 

1 

0 

0 0.82 x 10 

1 0.17 x 10 1 .o 0 . 1 4 ~  10 

2 0.35 x 1 .o 0 . 1 8 ~  10-1 

0.56 x l f 3  3 0.16 x 10 1 .o 

4 0.43 x 10 -12 1.0 0.30 x 

0 

-5  
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Table 15. Converged values of the functions x(t), u(t) for K = 0.5 
(Example 3.3) 

t x(t) u(t) 

0 .o 0 .oooo 0.5390 

0.1 0.1716 0.5257 

0.2 0.3447 0.4851 

0.3 0.5211 0.418 1 

0.4 0.7045 0.3306 

0.5 0.9017 0.2338 

0.6 1.1248 0.1413 

0.7 1.3934 0.0645 

0.8 1.7410 0.0102 

0.9 2.2305 -0.0186 

1 .o 3 .oooo -0.0207 

Table 16. The functions P(N), J(N) for K = 0.5 
(Example 3.3) 

N P U J 

1 
0 0.82 x 10 

0 
1 0 . 1 7 ~  10 1 .o 0 . 1 9 ~  10 

2 0.35 x 1 .o 0 . 1 9 ~  10-1 

0 

3 0.17 1 .o o .54 

4 0.46 x 10 -12 1.0 0.29 x lom6 



25 AAR- 57 

Table 17. Converged values of the functions x(t), u(t) for K = 1 
(Example 3.3) 

0 .o 0.0000 0.5722 

0.1 0.1772 0 S556 

0.2 0.3551 0.5057 

0.3 0.5348 0.4244 

0.4 0.7197 0.3 194 

0.5 0.9168 0.2044 

0.6 1.1383 0.0957 

0.7 1.4044 0.0068 

0.8 1.7488 -0.0530 

0.9 2.2345 -0.0786 

1 .o 3 .oooo -0.0642 

Table 18. The functions P(N), J(N) for K = 1 
(Example 3.3) 

N P M J 

1 

0 

0 0.82 x 10 

1 0.18 x 10 1 .o 0.24 x 10 

2 0.35 x 1 .o 0.19 x 10-1 

0 

3 0.18 1 .o 0.53 

4 0.54 x 10 -12 1.0 0.30 x 
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Table 19. Converged values of the functions x(t), y(t), u(t) for K = 0 
(Example 4.1) 

0 .o 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 .o 

0.0000 

0.0049 

0.0199 

0.0447 

0.0787 

0.1206 

0.1678 

0.2158 

0.2584 

0.2886 

0.3000 

0 .oooo 

0.0999 

0.1990 

0.2952 

0.3828 

0.4513 

0.4847 

0.4643 

0.3761 

0.2178 

0 .oooo 

1.5602 

1.5193 

1.4384 

1.3087 

1 1232 

0.8788 

0.5795 

0.2387 

-0.1207 

-0.4711 

-0.7871 

Table 20. The functions P(N), J(N) for K = 0 
(Example 4.1) 

N P v J 

1 
0 0.lOx 10 

1 0.79 x 10-1 1 .o 0.26 x 10 

2 0.32 x 1 .o 0.29 x 10-1 

3 0.31 1 .o 0.28 x 

0 

4 0.17 x 1 .o 0.21 

5 0.38 x 1.0 0.97 x 
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Table 2 1. Converged values of the functions x(t), y(t), u(t) for K = 0.5 
(Example 4.1) 

0 .o 0 .oooo 0 .oooo 1.5647 

0.1 0.0049 0.0999 1.5256 

0.2 0.0199 0.1991 1.4420 

0.3 0.0447 0.2953 1.3071 

0.4 0.0787 0.3826 1.1173 

0.5 0.1206 0.4505 0.8727 

0.6 0.1676 0.4833 0.5786 

0.7 0.2155 0.4635 0.2451 

0.8 0.2581 0.3770 -0.1119 

0.9 0.2885 0.2196 -0.4722 

1 .o 0.3000 0 .oooo -0.8113 

Table 22. The functions P(N), J(N) for K = 0.5 
(Example 4.1) 

N P u J 

1 
0 0.10 x 10 

1 0.82 x lo-' 1 .o 0.28 x 10 

2 0.34 x 1 .o 0.30 x lo-' 

3 0.35 1 .o 0.30 x 

4 0.21 x 10 1 .o 

0 

0.23 IO-$ 
-8 

5 0.57 x 10 -17 1.0 0.11 x 
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Table 23. Converged values of the functions x(t), y(t), u(t) for K = 1 
(Example 4.1) 

0 .o 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0 .a 

0.9 

1 .o 

0 .oooo 

0.0049 

0.0199 

0.0447 

0.0787 

0.1206 

0.1675 

0.2152 

0.2579 

0.2884 

0.3000 

0 .oooo 

0.0999 

0.1992 

0.2955 

0.3825 

0.4497 

0.4819 

0.4627 

0.3778 

0.2213 

0 .oooo 

1.5679 

1.5317 

1.4457 

1.3057 

1.1116 

0.8669 

0.5777 

0.2514 

-0.1033 

-0.4733 

-0.8350 

Table 24. The functions P(N), J(N) for K = 1 
(Example 4.1) 

N P u J 

1 
0 0.10 x 10 

0 
1 0.84 x lo-' 1 .o 0.31 x 10 

2 0.36 x 1 .o 0.31 x lo-' 

3 0.39 1 .o 0.31 x 

4 0.26 x 1 .o 0.25 

5 0.86 x 10 - l~  1.0 0.14 x 
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Table 25. Converged values of the functions x(t), y(t), u(t) for K = 0 
(Example 4.2) 

0 .o 0.0000 0 .oooo 10 ,7408 

0.1 1.0192 0.1425 8.9413 

0.2 1.7231 0.4795 4.5846 

0.3 1.9119 1.0405 -1.8971 

0.4 1.5955 1.7724 -6.8427 

0.5 1 .oooo 3 .oooo c -9.2385 

Table 26. The functions P(N), J(N) for K = 0 
(Example 4.2) 

N P U J 

2 0 0 . 1 5 ~  10 

1 2 
1 0.85 x 10 0.5 0.25 x 10 

1 

0 

2 0.84 x 10-1 1 .o 0 . 1 5 ~  10 

3 0.11 loe3 1 .o 0.12 x 10 

5 0.20 x 10 -20 1.0 0.51 loe9 

-9 -3 4 0.29 x 10 1 .o 0 . 1 9 ~  10 
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Table 27. Converged values of the functions x(t), y(t), u(t) for K = 0.5 
(Example 4.2) 

t 
-~ ~ ~ 

0 .o 0.0000 0 .oooo 10 * 7454 

0.1 1.0195 0.1425 8.9422 

0.2 1.7233 0.4796 4.1616 

0.3 1.9116 1.0406 - 1.9006 

0.4 1.5952 1.7724 - 6.8405 

0.5 1 .oooo 3 .oooo -9.2369 

Table 28. The functions P(N), J(N) for K = 0.5 
(Example 4.2) 

N P II J 

2 

1 2 

1 

-3 0 

0 0 . 1 5 ~  10 

1 0.85 x 10 0.5 0.25 x 10 

2 0.84 x 10-1 1 .o 0.16 x 10 

3 0.11x 10 1 .o 0.12 x 10 

4 0.29 1 .o 0.19 x 

5 0.20 x 10 1 .o 0.52 
- 20 
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Table 29. Converged values of the functions x(t), y(t), u(t) for K = 1 
(Example 4.2) 

0 .o 0 .oooo 0 .oooo 10.7500 

0.1 1.0199 0.1426 8.9432 

0.2 1.7234 0.4797 4.1578 

0.3 1.9114 1.0407 -1.9040 

0.4 1.5949 1.7725 -6.8384 

0.5 1 .oooo 3 .oooo - 9 .23 53 

Table 30. The Eunctions P(N), J(N) for K = 1 
(Example 4.2) 

N P II J 

2 

1 2 

0 0 - l5x  10 

1 0.85 x 10 0.5 0.26 x 10 

1 

0 

2 0.84 x 10-1 1 .o 0 . 1 6 ~  10 

3 0.11 1 .o 0.12x 10 

4 0.29 x 1 .o 0.19 x 

5 0.20 x 1 .o 0.53 
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